
Solutions Exam Imperative Programming
Tuesday 10 November 2015, 18:30-21:30h

Problem 1: Assignments (20 points)
For each of the following annotations determine which choice fits on the empty line (.....). The variables x, y and z are of type int.
Note that A, B and C (uppercase!) are specification-constants (so not program variables).

1.1 /* x == A, y == B */ 1.4 /* x == B, y == A */
/* x - y == A - B, y == B */ x = y;
x = x - y; /* x == A, y == A */
/* x == A - B, y == B */ y = x;
/* x == A - B, y - x == 2*B - A */ /* x == A, y == A */
y = y - x; So, answer B.
/* x == A - B, y == 2*B - A */
So, answer B.

1.2 /* 4*x + 5*y == A */ 1.5 /* x == A + 2, y == 2*A */
/* 4*(x+y) + y == A */ /* 3*x - 4 == 3*A + 2, y == 2*A */
x = 4*(x+y); x = 3*x - 4;
/* x + y == A */ /* x == 3*A + 2, y == 2*A */
So, answer A. /* x == 3*A + 2, x - y == A + 2 */

y = x - y;
/* x == 3*A + 2, y == A + 2 */
So, answer C.

1.3 /* x == A*A*A, y == A*A, z == A */ 1.6 /* y == A, z == A + B, x == A + B + C */
/* x+3*y+3*z+1==(A+1)*(A+1)*(A+1) */ /* y == A, z - y == B, x == A + B + C */
x = x + 3*y + z + 1; z = z - y;
/* x == (A+1)*(A+1)*(A+1) */ /* y == A, z == B, x == A + B + C */
So, answer B. /* x - y == B + C, z == B, x == A + B + C */

y = x - y;
/* y == B + C, z == B, x == A + B + C */
/* y == B + C, z == B, x - z == A + C */
x = x - z;
/* y == B + C, z == B, x - z == A + C */
So, answer A.

1

Problem 2: Time complexity (20 points)
In this problem the specification constant N is a non-zero natural number (i.e. N>0). Determine for each of the following program
fragments the sharpest upper limit for the number of calculation steps that the fragment performs in terms of N. For a fragment that
needs N steps, the correct answer is therefore O(N) and not O(N2) as O(N) is the sharpest upper limit.

1. int i, s = 0;
for (i=N; 2*i>0; i--) {

s += i;
}

O(N), so answer C.

2. int i, j, s=0;
for (i=1; i < N; i*=2) {

for (j=i+1; j < N; j+=2) {
s += j;

}
}

O(N logN), so answer D.

3. int i = 0, s=0, p=1;
while (s < N) {

i++;
p = p*i;
s += i;

}

O(
√
N), so answer B.

4. int i = N, s = 0;
while (i > 0) {

s++;
if (i%2 == 1) {

i = i - 1;
}
i = i/2;

}

O(logN), so answer A.

5. int i = 0, s = 0;
while (2*i <= N*N) {

s+=i;
i++;

}

O(N2), sso answer E.

6. int i = 0, s = 0;
while (s <= N*N) {

s+=i;
i++;

}

O(N), so answer C.

2

Problem 3: counting emirps (10 points)
An emirp is a prime number of which its reversal (in decimal representation) is a different prime number.

An example of an emirp is 17, since 17 and its reverse 71 are both prime numbers. Another example is the prime 9781, because
1879 is also prime. Note that the prime number 11 is not an emirp, since its reverse is 11 itself.

Write a program that accepts on its input two integers a and b, where 0 ≤ a < b ≤ 10000. Its output should be all emirps n,
where a ≤ n ≤ b). Note that each emirp is printed on a separate line (without any spaces), and that the emirps must be printed in
increasing order.

#include <stdio.h>
#include <stdlib.h>

int isPrime(int n) {
if ((n < 3) || (n%2 == 0)) {
return (n == 2 ? 1 : 0);

}
for (int d = 3; d*d <= n; d += 2) {
if (n % d == 0) {

return 0;
}

}
return 1;

}

int reverse(int n) {
int r = 0;
while (n > 0) {
r = r*10 + (n%10);
n /= 10;

}
return r;

}

void showEmirps(int a, int b) {
while (a <= b) {
if (isPrime(a)) {

int r = reverse(a);
if ((a != r) && isPrime(r)) {

printf("%d\n", a);
}

}
a++;

}
}

int main() {
int a, b;
scanf ("%d %d", &a, &b);
showEmirps(a, b);
return 0;

}

3

Problem 4: cycle detection (20 points)
The input of this problem consists of two lines. The first line consists of a positive integer n, where 1 ≤ n ≤ 100. The second line
consists of a permutation (i.e. rearrangement) of the numbers 0, 1, 2, .., n-1. An example would be the input:

10
4 2 1 3 6 0 8 9 7 5

This input represents the following figure:
0 1 2 3 4 5 6 7 8 9

4 2 1 3 6 0 8 9 7 5

We see that the figure contains 3 cycles. Let a[] be the array containing the number sequence. The first cycle starts at index 0,
where we find that a[0]=4. Therefore, we jump to index 4, and detect that a[4]=6. So, the next step is to jump to index 6, and we
find a[6]=8. We can repeat this process, until we reached the index 5, where we detect that a[5]=0, i.e. the starting index. This way,
we find the cycle [0,4,6,8,7,9,5], which has length 7 (i.e. 7 elements). The other two cycles are [1,2] (with length 2) and the singleton
cycle [3] (of length 1).

Write a program that accepts the above mentioned input format, and outputs for each cycle its smallest element and the length of
the cycle (one cycle per line). The cycles should be printed in increasing order of the starting index.

#include <stdio.h>
#include <stdlib.h>

int main() {
int i, n, a[100];
scanf ("%d", &n);
for (i=0; i < n; i++) {
scanf("%d", &a[i]);

}
for (i=0; i < n; i++) {
if (a[i] >= 0) {

int j=i, len=0;
do {

int h = j;
j = a[j];
a[h] = -1;
len++;

} while (i!=j);
printf("%d %d\n", i, len);

}
}
return 0;

}

4

Problem 5: recursion (20 points)
Consider the following sequence of positive integers: 8 7 2 3 1 4 5
We can construct from the sequence an arithmetic expression by replacing the spaces between two consecutive integers by a ’+’ or a ’-’
and evaluate the corresponding expression. For the given sequence, there exist precisely 3 expressions of this type that evaluate to 20:

8 + 7 + 2 + 3 + 1 + 4− 5 8 + 7 + 2 + 3− 1− 4 + 5 8 + 7− 2− 3 + 1 + 4 + 5

In this problem, the input consist of two lines. The first line consists of 2 positive integers n and g. The number n is the length of
the sequence (in this example 7). The number g denotes the goal (in this example 20). The second line of the input consist of n positive
integers: the input sequence. Your program should output the number of expressions that evaluate to g (in this example 3). You may
assume that 2 ≤ n ≤ 20.

The following incomplete code fragment is available in Justitia. Download it and complete the code. You are asked to implement the
body of the function plusmin. This function should call a recursive helper function (with suitably chosen parameters/arguments) that
solves the problem. You are not allowed to make changes in the main function. Nor are you allowed to introduce global variables.

#include <stdio.h>
#include <stdlib.h>

int cntPlusMin(int idx, int length, int a[], int n, int sum) {
if (idx == length) {
return (sum == n);

}
return cntPlusMin(idx+1, length, a, n, sum+a[idx]) +

cntPlusMin(idx+1, length, a, n, sum-a[idx]);
}

int plusmin(int length, int a[], int n) {
return cntPlusMin(1, length, a, n, a[0]);

}

int main() {
int len, n, i, a[100];
scanf ("%d %d", &len, &n);
for (i=0; i < len; i++) {
scanf("%d", &a[i]);

}
printf("%d\n", plusmin(len, a, n));
return 0;

}

5

